GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

HYDRAULICS (Code: 3330603)

Diploma Programme in which this course is offered	Semester in which offered
Civil Engineering, Environmental Engineering,	3 rd semester
Transportation Engineering	

1. RATIONALE

It is necessary for civil, environmental and transportation engineers to understand the behavior of fluid flow in different conditions in pipes, channels, canals, notches, weirs etc. In the field these conditions are very common and diploma passouts has to solve problems related to water seepage and discharge.

The basic knowledge about hydraulics and fluid mechanics will be useful in subjects like Irrigation, Water Resources Management and Public Health Engineering. In this course, basics of hydraulics and its application oriented content has been kept with a focus that students should be able to solve practical problems. Competencies developed by this course would therefore be useful for students while performing his/her job in the field of Water resources / Irrigation/PHE and Environment Engineering.

2. COMPETENCIES (Programme Outcomes as per NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

- i Measure the pressure and flow of water in different conditions using various measuring devices
- ii Compute discharge and loss of head through pipes, open channels, notches and other hydraulic structures.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme			cheme		
	(In Hou	rs)	(L+T+P)	Theory Marks		eory Marks Practical Marks		Total Marks
L	T	P	C	ESE	PA	ESE	PA	150
3	1	2	6	70	30	20	30	130

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning	Topics and Sub-topics		
	Outcomes (Course			
Unit	Outcomes in Cognitive			
	Domain according to			
	NBA terminology)			
Unit – I	1a.Explain the terms	1.1 Technical terms used in Hydraulics – Fluid		
Introduction,	associated with	Mechanics, Hydrostatics, Hydro-kinematics,		
Pressure and	Hydraulics	Hydro-Dynamics-Ideal and Real Fluid.		
pressure	1b.Clarify different	1.2 Properties of liquid – Viscosity-Density-Specific		
measurement	properties of liquid	Gravity-Surface Tension-Capillarity Vapour		
	1c. Describe different	Pressure-Elasticity.		
	types of pressure and	1.3 Various types of pressure – Atmospheric Pressure-		
	methods of	Gauge Pressure-Absolute Pressure Vacuum		
	measurement	Pressure-Separation Pressure/s		
		1.4 Measurement of pressure/s by different methods		
		1.5 Measurement of difference of pressure using "U"		
		tube Manometer and inverted "U" tube Manometer		
Unit – II	2a Explain the	2.1 Relationship between pressure and depth of liquid		
Hydrostatics	Relationship between	2.1.1 Pressure diagram for different conditions		
Try drostaties	pressure and depth of	2.2 Total pressure and center of pressure		
	liquid	2.2.1 Computation of Total Pressure		
	2b.Compute total	and depth of centre of pressure		
	Pressure and Centre of	1		
	pressure			
Unit – III	3a. Explain different	3.1 Types of flow - LaminarTurbulentUniform		
Hydro	types of flow	Non-uniform –SteadyUn-steady –Rotational and		
kinematics &	3b. Derive Continuity	irrotationalOne, Two and Three Dimensional flow		
Hydrodynam	Equation	3.2 Reynold's number		
ics	3c. Explain different	3.3 Continuity Equation		
	kinds of energy	3.4 Types of Energy – Potential, Pressure and		
	3d Apply Bernoulli's	kinematics		
	theorem to measure	3.5 Bernoulli's Equation and its applications.3.6 Momentum Equation		
	the pressure and Discharge.	3.0 Momentum Equation		
Unit – IV	4a. Compute different	4.1 Definition and types of orifice		
Hydraulic	Hydraulic Coefficient	4.2 Various Hydraulic Coefficient and its relation -		
icient,	for different types of	Coefficient of Contraction, Velocity, Discharge.		
notches and	orifice	4.3 Types of notches and weirs		
weirs	4b. Identify types of	4.4 Computation of discharge through notches		
	Notches and weirs.	4.4.1 Rectangular Notch		
	4c. Calculate discharge	4.4.2 V -Notch.		
	through notches and	4.5 Computation of discharge through weirs		
	weirs.	4.5.1 Discharge through narrow crested and broad		
		Crested weir.		
TT *4 T7	5 F 1 : F	4.5.2 Discharge through Cipolletti weir.		
Unit – V	5a. Explain Energy	5.1 Characteristics of flow through pipes		
Flow through	(Head) losses	5.2 Major and Minor Energy (Head) losses in pipe		
pipes	5b. Draw Hydraulic Gradient Line (HGL)	Flow- frictional loss, loss of head at entry, exit,		
	Gradient Line (HGL) and Total Energy Line	Sudden enlargement and contraction and at bend. 5.2.1 Computation of major head by Darcy Weisbach		
	(TEL)	Equation.		
	5c. Design Pipeline	5.3 Hydraulic Gradient Line (HGL) and Total Energy		
	20. Design i ipenne	5.5 11, studie Studient Line (110L) and 10th Line gy		

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics		
	network using formula and nomogram	Line (TEL) 5.4 Design of Pipeline-using formula & Nomogram		
Unit – VI	6a. Analyse uniform flow 6b. Understand Specific	6.1 Characteristics of open channel flow6.1.1 Comparison of pipe flow and channel flow.		
Flow through	Energy Diagram	6.1.2 Field examples of open channel		
Open Channel	6c. Describe Procedure for measuringVelocity of flow6d. Calculate discharge.	 6.2 Analyse uniform flow 6.2.1 Froud's number, 6.2.2 Hydraulic mean depth- concept & computation 6.2.3 Use of Chezy's and Manning's formulae. 6.2.4 Most economical sections of channel 6.2.4.1 Rectangular, Trapezoidal and circular shapes. 6.3 Specific Energy Diagram 6.4 River Gauging 		
		6.4.1 Measurement of mean velocity using surface float, velocity rod and current meter.		

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			rks
		Teaching Hours	R Level	U Level	A Level	Total Marks
I	Introduction, Pressure and pressure measurement	7	3	4	4	11
II	Hydrostatics	5	3	4	-	7
III	Hydro kinematics & Hydrodynamics	8	2	7	7	16
IV	Hydraulic coefficient, notches and weirs	8	2	5	7	14
V	Flow through pipes	7	3	4	4	11
VI	Flow through Open Channel	7	3	4	4	11
Tota	Total		16	28	26	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (Course Outcomes in psychomotor and affective domain) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of Programme Outcomes/Course Outcomes in affective domain as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

.

S. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA terminology)	Apprx. Hrs. Required
1	I	Measure the pressure of water in pipe using (a) Piezometer (b) Different types of manometers	4
2	III	Determine discharge through a given venturimeter.	4
3	IV	Determine coefficient such as Cc, Cv, and Cd for different types of orifices	4
4	IV	Compute coefficient of discharge for V notch and Preparation of calibration graph for interpolation and extrapolation	4
5	IV	Compute coefficient of discharge for Rectangular notch and Preparation of calibration graph for interpolation and extrapolation	4
6	V	Determine loss of head in various diameter of pipes and effect of material of pipe on loss of head	4
7	III	Demonstrate functioning of Bernoulli's Appratus	2
8	III	I Demonstrate use of Reynold's number	
		Total	28
		TUTORIALS	
1	I	Solve numerical problems based Pressure measurement	2
2	II	Solve numerical problems based on Hydrostatics	2
3	III	Solve numerical problems based on Hydrodynamic and Hydro kinematics	2
4	IV	·	
5	V		
6	VI Solve numerical problems based on Flow through Open Channel		2
		Total	14

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- 1. Student will visit nearby Canal Structure and Submit report consisting flow data, cross sections, hydraulic data etc. for the same.
- 2. Student will Survey an industry / Department for handling or using pressure measuring devices.

3. Student will carry out market survey for pipes of different materials.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Use demonstration, video/animation films field/industry visit for explaining complex/abstract concepts of Hydraulics.
- ii. This course requires lot of practice on numerical. Students may be asked to solve the numerical during lecture periods and tutorial periods, in addition home assignments may be given. To avoid copying by students each problem must have different parameters for each student or at least there may be five to six sets of problems with different values., In other words each student will get same problem but with varied parameters. (Values of pressure, volume, flow, force, distance, speed etc may be different for each student)

9. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication
	Hydraulics, Fluid Mechanics and Hydraulic machine	S.Ramamrutham	Dhanpat Rai
	Hydraulics, Fluid Mechanics and Hydraulic machine	R. S. Khurmi	S.Chand
2	Hydraulics, Fluid Mechanics and Hydraulic machine	R K Bansal	S.Chand
3.			
4.	Fluid Mechanics	A K Jain	Khanna Publishers
5.	Journal of experiments in Hydraulics	Rao and Hasan	New Height
6.	Hydraulic laboratory	Rao and Hasan	New Height
7.	Fluid Mechanics	Dr.M.L.Mathur	Std.Publication
8	Fluid Mechanics & Hydraulics	S.C.Gupta	Pearson Education
9.	Hydraulics and Hydraulic machine	Prof.V.P.Priyani	Charotar Publication

B. List of Major Equipment/Materials

1. Piezometer 2. U-Tube Manometer 3. Ventutrimeter 4. V-notch

5. U-notch 6. Pipes- PVC, G.I., 7. Measuring Tank 8. Stop Watch

9. Gauge 10. Mercury

Or Hydraulic Bench equipped with all above equipments

C List of Software/Learning Websites

- i. www.waterbouw.tudelft.nl/
- ii. www.learnrstv.com
- iii. www.shiksha.com, IIT, Roorkee
- iv. www.blackwellpublishing.com
- v. www.hrpwa.org
- vi. www.creativeworld9.com
- vii. nptel.iitm.ac.in

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. P.A. Pandya**, Lecturer in Civil Engg. Deptt. Govt. Polytechnic, Himatnagar
- **Prof. H. R. Mehta**, Lecturer in Civil Engg. Deptt. C. U. Shah Polytechnic, Surendranagar
- **Prof. Anil K. Belani**, Lecturer in Civil Engg. Deptt. Tolani F. G. Polytechnic, Adipur
- **Prof. Rina K. Chokshi**, Head, Civil Engg. Deptt. Parul Institute of Engg. And Tech. (Diploma Studies), Limda, Vadodara.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. A K JAIN, Professor, Department of Civil & Environmental Engineering
- **Prof J. P. Tegar,** Professor and Head Department of Civil & Environmental Engineering